My First Test
1. Introduction
In this post I explore traffic data and visualize hourly trendlines.
2. Load the data
```python import pandas as pd df = pd.read_csv(“data/traffic.csv”, parse_dates=[“timestamp”]) df[“hour”] = df[“timestamp”].dt.hour hours = df.groupby(“hour”)[“count”].mean() print(hours.head())
```r library(forecast) fit <- auto.arima(hours) forecast(fit, h = 24)
– This structure gives headers, code, a static image graph, inline captions, etc.
4. 📊 Adding Graphs (Static vs Interactive)
Option A: Static graph (easiest)
- Compute or train your graph in Python/R.
- Save it as a
.png
or.svg
into e.g./assets/plots/average.png
. - Reference in Markdown using:
```markdown
Start the conversation